An Encoder-Decoder Based Convolution Neural Network (CNN) for Future Advanced Driver Assistance System (ADAS)
نویسندگان
چکیده
We propose a practical Convolution Neural Network (CNN) model termed the CNN for Semantic Segmentation for driver Assistance system (CSSA). It is a novel semantic segmentation model for probabilistic pixel-wise segmentation, which is able to predict pixel-wise class labels of a given input image. Recently, scene understanding has turned out to be one of the emerging areas of research, and pixel-wise semantic segmentation is a key tool for visual scene understanding. Among future intelligent systems, the Advanced Driver Assistance System (ADAS) is one of the most favorite research topic. The CSSA is a road scene understanding CNN that could be a useful constituent of the ADAS toolkit. The proposed CNN network is an encoder-decoder model, which is built on convolutional encoder layers adopted from the Visual Geometry Group’s VGG-16 net, whereas the decoder is inspired by segmentation network (SegNet). The proposed architecture mitigates the limitations of the existing methods based on state-of-the-art encoder-decoder design. The encoder performs convolution, while the decoder is responsible for deconvolution and un-pooling/up-sampling to predict pixel-wise class labels. The key idea is to apply the up-sampling decoder network, which maps the low-resolution encoder feature maps. This architecture substantially reduces the number of trainable parameters and reuses the encoder’s pooling indices to up-sample to map pixel-wise classification and segmentation. We have experimented with different activation functions, pooling methods, dropout units and architectures to design an efficient CNN architecture. The proposed network offers a significant improvement in performance in segmentation results while reducing the number of trainable parameters. Moreover, there is a considerable improvement in performance in comparison to the benchmark results over PASCAL VOC-12 and the CamVid.
منابع مشابه
Convolutional Encoders for Neural Machine Translation
We propose a general Convolutional Neural Network (CNN) encoder model for machine translation that fits within in the framework of Encoder-Decoder models proposed by Cho, et. al. [1]. A CNN takes as input a sentence in the source language, performs multiple convolution and pooling operations, and uses a fully connected layer to produce a fixed-length encoding of the sentence as input to a Recur...
متن کاملO11: Safety Potential of Advanced Driver Assistance Systems
Advanced driver assistance systems (ADAS) have the potential to accomplish a major contribution to road safety. This is valid for minor crashes to very severe accidents with personal injuries. The Allianz Centre for Technology attends the development of new driver assistance systems by carrying out accident analysis and estimating the efficiency of new ADAS. In this context new ADAS from differ...
متن کاملDigital surface model extraction with high details using single high resolution satellite image and SRTM global DEM based on deep learning
The digital surface model (DSM) is an important product in the field of photogrammetry and remote sensing and has variety of applications in this field. Existed techniques require more than one image for DSM extraction and in this paper it is tried to investigate and analyze the probability of DSM extraction from a single satellite image. In this regard, an algorithm based on deep convolutional...
متن کاملAn efficient method for cloud detection based on the feature-level fusion of Landsat-8 OLI spectral bands in deep convolutional neural network
Cloud segmentation is a critical pre-processing step for any multi-spectral satellite image application. In particular, disaster-related applications e.g., flood monitoring or rapid damage mapping, which are highly time and data-critical, require methods that produce accurate cloud masks in a short time while being able to adapt to large variations in the target domain (induced by atmospheric c...
متن کاملMorphological reinflection with convolutional neural networks
We present a system for morphological reinflection based on an encoder-decoder neural network model with extra convolutional layers. In spite of its simplicity, the method performs reasonably well on all the languages of the SIGMORPHON 2016 shared task, particularly for the most challenging problem of limited-resources reinflection (track 2, task 3). We also find that using only convolution ach...
متن کامل